
36 / Summer 2005 PC/104 Embedded Solutions Copyright 2005

Special Software Issues

This article guides the reader through the process of migrating
a DOS-based application to Linux. A simple example program
is provided which demonstrates key concepts for direct I/O
port access in both DOS and Linux environments. The article
concludes with the development of a Linux device driver for a
PC/104 card with an onboard 82C55 programmable peripheral
interface device.

There are many reasons people move from DOS to Linux for
their embedded applications. Among these reasons are robust
networking capabilities, efficient multitasking, and freely avail-
able source code. With this transition comes added flexibility and
complexity. This article is intended to help ease that transition by
presenting the process of converting a simple DOS-based pro-
gram to a Linux-based program utilizing a device driver.

Simple DOS example
Many applications require accessing a digital I/O port. In this
example, we look at accessing an 82C55 digital I/O controller
with a base address of 0x358 as is available on the Micro/sys
MPC148 High Density Digital I/O board (Figure 1). The 82C55
requires four continuous port addresses: the first three are used
for 24 bits of I/O, and the fourth for configuration.

The program in Listing 1 was written for 16-bit DOS using
Borland C 5.02. It demonstrates configuring the 82C55 to read
on Port A and write on Port B. It then reads the value of port A
and writes that value to Port B.

There are two important function calls in this code: outp() and
inp(). These calls are responsible for directly accessing the com-
puter’s I/O ports. The syntax in Borland C is:

outp(address,data)
int inp(address)

Simple Linux example
The syntax for some functions differs between the Linux com-
piler and Borland’s DOS compiler. For example, with GCC, the
standard Linux C compiler, the direct I/O port access calls are
defined as:

outb(data,address)
char inb(address)

There are similar functions for word and double word accesses.

Replacing outp() and inp() with outb() and inb() and changing
the order of the parameters in outb() are the first steps in migrat-
ing this application. If the program is compiled with just these
changes, the program will crash with a segmentation fault. In
order to access the ports from a user-space program (as opposed
to a device driver) the program must have the correct permis-
sions. There are two ways to do this:

ioperm()
iopl()

Migrating a DOS-based
application to LINUX:
A d i g i t a l I / O e x a m p l e

By Zeke Burgess

#include <dos.h>
#define PORTA 0x358
#define PORTB PORTA+1
#define CFGPORT PORTA+3
int main(){
 char readvalue;
/* Set up 82C55 to read PORTA
 * and write PORTB */
 outp(CFGPORT, 0x98);
 while(1){
/* Read from PORTA */
 readvalue = inp(PORTA);
 /* Write to PORTB */
 outp(PORTB, readvalue);
 }
}

Listing 1

Figure 1

http://www.pc104online.com

Copyright 2005 PC/104 Embedded Solutions Summer 2005 / 37

These functions perform similar tasks but have important differ-
ences. The most important is that ioperm() can only enable ranges
of ports in the range 0x000 to 0x3FF while iopl() must enable all
65536 ports.

Ioperm() example
The code in Listing 2 makes use of ioperm() to allow access to the
four I/O ports starting at 0x358. After allowing for port accesses,
the program reads port A and writes that value to port B, as in the
DOS example above. Also, the header files that are included have
been modified for compiling under Linux. This code needs to be
compiled with the -O2 command line switch so that the outb()
and inb() functions will be inlined.

If this program is run by a non-root user, the “Access denied, quit-
ting” message will be displayed and the program will abort. This
is once again an issue with permissions. The iopl() and ioperm()
functions require that the program be run with root privileges.
For applications in a single-user environment, this may be accept-
able. However, when used in a multi-user environment, having
an application that runs as root raises security concerns. Another
limitation with this method is that the ports that are requested
with ioperm() are locked to this particular application.

Introducing the device driver
The device driver addresses these concerns. With a device driver
for the 82C55 loaded into the kernel, a user-level application can
access the ports and read or write data. Furthermore, with careful
programming, multiple applications may access the ports.

The device driver is a set of function calls that the kernel exports
to the user’s application. The driver is also dependent on the
kernel version. For this example, a 2.4 series kernel is used. For
the 82C55 device driver, the primary interface will be through
the ioctl(), or I/O control, functions. A unique ioctl number that
is based on a magic number defined in the header file is given
to each ioctl call. There are three things that this driver can do:
configure the 82C55, read from a port, and write to a port. In
the header file(dio_82C55.h), three ioctl() functions and a magic
number are defined:

#define DIO_MAGIC ‘Z’
#define DIO_CONFIG _IOWR(DIO_MAGIC, 0, sizeof(port));
#define DIO_READ _IOWR(DIO_MAGIC, 1, sizeof(port));
#define DIO_WRITE _IOWR(DIO_MAGIC, 2, sizeof(port));

The header file also defines a structure dio_port:
 typedef struct dio_port{
 char portnum;
 char val;
 }

This structure is used to pass information between the user appli-
cation and the device driver. These structures can be as simple
as the one above or much more complicated, depending on the
hardware that is being accessed and the types and amount of data
being transferred between the driver and application.

Linux device driver example
In a device driver there are three things that must be handled.
The driver must be initialized, de-initialized, and there should
be something that the driver actually does. These necessities
are handled by the functions dio_init(), dio_cleanup(), and dio_
ioctl().

The function dio_init() is responsible for requesting the ports that
will be used by the driver. Here we request ports 0x358 to 0x35C
for the driver dio_82C55. This function is called by the kernel
module loader when the device is opened.

The function dio_cleanup() releases the resources back to the
operating system. This function is called by the kernel module
unloader when the device is closed.

The “meat” of the device driver is the function dio_ioctl(). This
function determines which ioctl() function was requested and
runs the associated code. The Listing 3 code shows the dio_ioctl()
function. This code ensures that the argument that is being passed

#include <sys/io.h>
#include <stdio.h>
#define PORTA 0x358
#define PORTB PORTA+1
#define PORTC PORTA+2
#define CFGPORT PORTA+3
int main(){
 char readvalue;
 /* enable ports PORTA-PORTA+4,
 * quit if they are not available */
 if(ioperm(PORTA, 4, 1)) {
 printf(“Access denied, quitting\n”);
 return(-1);
 }
/* Set up to read A and bottom of C;
 * Write B and top of C */
 outb(0x98, CFGPORT);
 while(1){
 /* Read from Port A */
 readvalue = inb(PORTA);
 /* Write to Port B */
 outb(readvalue, PORTB);
 }
}

Listing 2

http://www.pc104online.com

38 / Summer 2005 PC/104 Embedded Solutions Copyright 2005

to it is valid and then determines which ioctl() command to use
based on the value of cmd.

Using the Linux driver
While it is possible to write an entire application in the driver, this
is not the preferred method. Instead, a user application is written
which uses the driver to interface with the hardware. The appli-
cation code is more complicated than that of the DOS example
and the ioperm() example. Instead of just opening ports and writ-
ing or reading them, we open a file descriptor and issue ioctl()
commands, as in Listing 4 below.

Compiling the Linux Driver
For DOS, the Borland compiler has a slick user interface that
allows you to compile by selecting a command from a pull down

Special Software Issues

static int dio_82C55_ioctl(
 struct inode* inode,
 struct file* file,
 unsigned int cmd,
 unsigned long arg)
{
struct dio_port channel;
int rval =0;
/* Make sure that we can access the data
 * from the user application */
 if(!access_ok(VERIFY_WRITE,
 (void *)arg,
 sizeof(port)))
 {
 printk(“DIO: cannot read argument\n”);
 return -EBUSY;
 }
/* Make a local copy of the data from the
 * user application */
 copy_from_user(&channel,
 (void*)arg,
 sizeof(port));
 switch(cmd){
 case DIO_READ:
 channel.val = inb(channel.portnum
 +PORTA_BASE);
 /* copy the value read back to
 * the user application */
 copy_to_user((void*)arg,
 &channel,
 sizeof(port));
 break;
 case DIO_WRITE:
 /* write the value to the port */
 outb(channel.val,
 channel.portnum+PORTA_BASE);
 break;
 case DIO_CFG:
 /* write configuration settings to
 * the 82C55 configuration register */
 outb(channel.val,
 PORT_CONFIG+PORTA_BASE);
 break;
 default:
 * Return an error since the command
 * is not recognized */
 printk(“DIO: Unknown IOCTL %x”, cmd);
 return -EINVAL;
 }
return rval;
}

Listing 3

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <linux/types.h>
#include “dio_82C55.h”
int main(){
int fd;
struct dio_port porta, portb;
struct dio_port portc, portcfg;
porta.portnum = PORTA;
portb.portnum = PORTB;
/* A = In, B = Out */
portcfg.val = PORTA_IN|PORT_ENABLE;
/* open device for read/write */
fd = open(“/dev/dio_82C55”, O_RDWR);
/* configure the 82C55 */
ioctl(fd, DIO_CFG, &portcfg);
while(1){
 /* Read port A */
 ioctl(fd, DIO_READ, &porta);
 portb.val = porta.val;
 /* Write port B */
 ioctl(fd, DIO_WRITE, &portb);
}
/* Close device */
close(fd);
return 0;
}

Listing 4

http://www.pc104online.com

Copyright 2005 PC/104 Embedded Solutions Summer 2005 / 39

menu. While there are user interfaces like this in Linux, many
people prefer to use the command line.

Compiling the device driver requires compiler flags set to let
the compiler know that it is compiling kernel level code. The
Makefile in Listing 5 can be used by issuing the make command.
The output file, dio_82C55.o, is a kernel module. This module
will be inserted into a running kernel and give access to the digital
I/O ports.

Compiling the Linux example program
The example program is quite simple with only one file to com-
pile. Using make with a Makefile is one option. However, the
example program can easily be compiled from the command line
with the command:

gcc -I/usr/src/linux/include dio_example.c -o dio_example

This will produce a binary file called dio_example that may be
run from the command line.

Testing the driver and example program
Before the system is ready to run the program, a device in /dev
must be created:

mknod /dev/dio_82C55 c 241 0 -m666

This command must be issued while logged in as root. A special
file called /dev/dio_82C55 will be created. This file represents a
character device with major number 241 and minor number 0.
This is in the defined range of “experimental” device numbers,
so should not conflict with other drivers that are installed on the
system.

We can then insert the device driver into the running system with
the insmod command:

insmod dio_driver.o

And run the example program:

./dio_example

If a logic high is applied to the 82C55 port A, the program will
read it and output the same value to port B.

Conclusion
We have now gone from a simple DOS based control program to a
simple Linux driver-based control program. Obviously, this is a
simplified example. There are times when interrupt handling,
DMA transfer, and memory mapped I/O are necessary. Linux
provides interfaces to the kernel that handle each of these. Even
better, Linux provides source code for drivers that make use of
these functions.

Zeke Burgess is a software engineer for
Micro/sys, Inc., a manufacturer of embed-
ded computer boards. He holds a B.S. in
Computer Science and Mathematics from
Harvey Mudd College. He has developed
Linux device drivers for embedded applica-
tions since 2001.

For further information and copies of the source code used in this
article, contact Zeke at:

Micro/sys, Inc.
3730 Park Place
Montrose, CA 91020
Tel: 818-244-4600
Fax: 818-244-4246
E-mail: zburgess@embeddedsys.com
Website: www.embeddedsys.com

Who/What Uses DOS

Is DOS Dead?
Though nearly 25 years old, DOS is still being used in

many applications. Many systems running with 8086

to Pentium processors use some variant of DOS. A

wide variety of embedded applications from data log-

ging systems to control systems use DOS as their

operating system.

DOS provides a well-known platform from which to

launch applications. It boots quickly, allows direct

access to the hardware and memory, and gives the

developer complete control of the system, making

it an ideal solution for many tasks. However, appli-

cations that require a multitasking environment or

support for some newer technologies will find other

operating systems such as Linux a better match for

their needs.

KERNELDIR = /usr/src/linux-2.4.20
include $(KERNELDIR)/.config
CFLAGS = -D__KERNEL__ -DMODULE
CFLAGS += -I$(KERNELDIR)/include -O -Wall
all: dio_82C55.o
clean:
 rm -rf *.o core

Listing 5

S I D E B A R

http://www.pc104online.com

