
Design Creation & Synthesis White Paper 
 

 
FPGAs: FAST TRACK TO DSP 
Revised February 2009 

 
ABSRACT: 
Given the prevalence of digital signal processing in a variety of industry segments, 
several implementation solutions are available depending on cost, performance, and 
design requirements. These solutions include DSP processor cores, application-specific 
integrated circuits (ASICs) or field-programmable gate array devices (FPGAs). While 
general purpose digital signal processors (DSPs) are popular, their performance fall 
short for many applications. While custom ASIC implementations offer high 
performance and power efficiency, their fabrication costs can be prohibitive for medium-
to-low volume products. Field Programmable Gate Arrays (FPGAs), along with their re-
programmability, strike a balance between cost and performance that makes them 
suitable for many DSP applications.  
This paper will examine the advantages and disadvantages of these silicon 
implementations, why FPGAs are often the most practical alternative, and the 
importance of a vendor-independent synthesis flow to take advantage of the DSP 
technologies available in the latest platform FPGAs. 
 

 
Authors: 

Douang Phanthavong 

Ehab Mohsen



Design Creation & Synthesis White Paper 
 

www.mentor.com/precision 2     

INTRODUCTION  
To many engineers, digital signal processors (DSPs) are proprietary devices used to implement 
signal processing functions. These conventional pieces of silicon have been used for years to 
quickly and efficiently digitize analog signals, arithmetically alter digital information, and 
convert the data back into the analog world. 

DSPs are found throughout the world of electronic equipment, from cell phones to flat-screen 
TVs. The use of dedicated DSP cores is still a widely popular means of achieving digital signal 
processing requirements. In no more than a few days time, a programmer can take a DSP device 
and write an algorithm that efficiently performs the processing task required. But as CPUs have 
incorporated arithmetic coprocessors and extensions that optimize digital signal processing tasks, 
and as other silicon alternatives have emerged, the necessity of a separate DSP device is no 
longer viewed as inevitable. In fact, there is increasing evidence that the negatives of discrete 
DSP devices outweigh their benefits.  

ISSUES OF USING STAND-ALONE DSP DEVICES  
Among the disadvantages of using a stand-alone, general purpose DSP chip is the issue of 
performance. Compared to embedded DSP functionality in either a custom ASIC or FPGA, a 
general-purpose DSP is by far the slowest option. Whereas a stand-alone DSP typically employs 
serial processing, the parallel capacities inherent to either ASIC or FPGA implementation will 
always give them both a significant edge over a stand-alone DSP.  

The second problem is power. If the end product relies on portability, the power drain of most 
general purpose DSPs can also become a problem. While DSPs are often quick to program into a 
system during the development phase, their power requirements make them unattractive for 
mobile devices.  

THE EMERGENCE OF ASIC DSP SOLUTIONS 
Historically, when the performance or power disadvantages of stand-alone DSP chips made them 
unviable for certain applications, most designers turned to custom ASIC implementations. Being 
hard-wired for a specific application, an ASIC can be equipped to run as fast and as powerfully 
as allowed by the upper limits of the technology node. It is faster and more power efficient than 
its general-purpose DSP counterpart.  

DSP vendors have been painfully aware of their lost market share due to more powerful ASIC 
solutions.  

Their response has been to create hardware-accelerated engines to increase performance gain. 
While engines such as dedicated Viterbi decoders and matrix multipliers enhance a DSP chip’s 
parallelism, the performance gain is less than 100% per additional engine and the DSP device 
becomes more expensive. 



Design Creation & Synthesis White Paper 
 

 

www.mentor.com/precision 3     

FPGAs AS AN ALTERNATIVE  
As well as ASICs stack up in benchmark comparisons, their high fabrication costs make them 
impractical for medium-to-low volume products. In today’s fast-paced environment of 
semiconductor innovation, long lead times and guarantees of high-volume production are often 
in short supply. In fact, a change in requirements or a discovery of a bug often results in costly 
return trips to the fab.  

As a result, more designers are turning to programmable logic devices, namely FPGAs, as a way 
to meet the demands of their DSP applications. The latest platform FPGAs are enhanced for 
digital-signal-processing, allowing extensive customization without the additional work required 
for custom ASICs. While even FPGA vendors admit that FPGAs typically do not outperform 
ASICs in either performance or power, the differences are inconsequential for many applications.  

Cost is among the important factors when considering an FPGA as a viable alternative. While 
ASICs have high manufacturing costs associated with them, high volume may justify the up-
front expense. However, the cost comparison is incomplete without considering the additional 
development, physical design, and verification costs associated with a custom ASIC, as well as 
post-market expense if the device requires an upgrade for any reason.  

A photo mask set at the 65 nm node costs roughly $1.5 million, making leading edge ASIC 
design a high-stakes endeavor. If the design has hidden glitches that only manifest themselves 
after fabrication, the re-work and re-spin may be costly and impact time-to-market.  

FPGAs WITH EMBEDDED DSP BLOCKS 
More designers are turning to FPGAs for digital signal processing due to their flexible 
architecture, high performance, and low cost. 

However, this was not always the case. In fact, older generation FPGAs did not implement DSP 
operations efficiently. A simple math equation, such as  

Y = (C ± (A * B) + CIN) 

used to be synthesized into the generic FPGA fabric and lead to multiple levels of logic with 
severe area and delay penalties.  

Fortunately, today’s advanced FPGAs have dedicated DSP blocks, or specialized regions of the 
device optimized for implementing arithmetic operations as the one described above. DSP 
architectures for Altera’s Stratix-IV family and Xilinx’s Virtex-5 family are shown in Figure 1 
and Figure 2, respectively.  



 

http://www.mentor.com/precision 4  

Figure 1: Altera Stratix-IV Embedded DSP Architecture 

 
 

Figure 2: Xilinx Virtex-5 DSP48E Slice 

 
FPGAs now incorporate embedded features that enable multiplication, accumulation, 
addition/subtraction and summation, all of which are commonly used for DSP functions. With 
these basic arithmetic functionalities, designing the overall DSP-based application becomes fast, 
flexible and efficient. At the core of a typical DSP block is a multiplier feeding an adder. DSP 
blocks have additional features that can be utilized for improved resource utilization and 
performance:  

• Pipelined registers in between the multiplier and adder.  

• Built-in registers at the inputs and output of the DSP block.  

• Dedicated input or multiplier output (or a combination) can synchronously load the 
output.  



 

http://www.mentor.com/precision 5  

• DSP blocks can be cascaded so that the output of an input stage goes to the next block 
(this is especially suitable for FIR filter implementation, described in a later section).  

However, the versatility just described, raises questions in terms of use-model. How does a 
designer ensure that certain functions are mapped to specialized DSP resources as desired? What 
kind of learning curve and changes to the design are involved?  

VENDOR INDEPENDENT SYNTHESIS 
There are two primary ways for a designer to control usage of an FPGA’s specialized DSP 
resources. The first is to physically instantiate the vendor-specific DSP technology cells within 
the HDL design. FPGA vendors typically provide push-button utilities to appropriately configure 
these cells and generate pre-synthesized netlists to be imported with the rest of the design.  

The second method is to describe functionality in standard HDL language and let the synthesis 
tool infer the embedded DSP technology. Figure 3 shows a simple multiply-accumulate function 
described in VHDL. An advanced synthesis tool will typically infer the correct DSP resource of 
the device, as well as detailed configuration such as pipeline registers and cascade levels as they 
are described in the HDL design. 

 

Figure 3: VHDL code describing multiple-accumulate function 
entity mac is  
port(  clk : in std_logic;  

a: in std_logic_vector (7 downto 0);  
b: in std_logic_vector (7 downto 0);  
result: inout std_logic_vector (16 downto 0));  

end mac;  
 
architecture behav_mac of mac is  
signal prod_result : std_logic_vector (15 downto 0);  
begin  
prod_result <= a * b;  
 
process (clk)  
begin  

if (clk'event and clk = '1') then  
result <= result + prod_result;  

end if;  
 
end process;  
end behav_mac; 

 

The inference method just described has two primary benefits, the first of which is that the user 
has control of resource allocation. In a real-world, DSP intensive design, you may be trying to 
infer more embedded DSP cells than are available on the device. In such a case you want to 
carefully choose which DSP is to be implemented in the generic logic fabric—perhaps one of the 



 

http://www.mentor.com/precision 6  

smaller functional units or perhaps one not on the critical timing path of the design. Keeping 
DSP functionality in generic HDL allows you to make this choice.  

Precision RTL Plus, Mentor Graphics’ leading FPGA synthesis tool, provides a resource 
management graphical user interface to make allocation decisions easy. As shown in Figure 4, 
Precision displays all embedded DSP blocks available on the device and displays the design 
blocks that are assigned to these resources or can potentially be assigned to them. Through this 
interface, you can control how specialized resources are assigned. These design blocks can be 
cross-probed back to the original HDL or design schematics within the Precision graphical user-
interface for more analysis. Though most tools do a great job in finding the optimal use of the 
available device resources, as a designer, you may find advantage in assigning certain functional 
blocks in a specific way. This flexibility is not available when instantiating vendor-dependent 
technology cells. 

Figure 4: Resource Manager in Precision RTL Plus 

 
 
The other benefit of the inference method is that it allows your design to be FPGA vendor 
independent. FPGA vendors frequently leap frog each other in terms of capabilities in their 
devices, meaning the vendor you use for this project may not be the best vendor for your next 
generation product. By using a vendor independent synthesis tool such as Precision RTL Plus, 
which supports all devices from leading FPGA vendors, you can re-target your next project to 
another device with fewer modifications to the design and tool flow. Using the instantiation 
method described above would require a complete re-generation of vendor-specific DSP 
technology cells when switching FPGA vendors. 



Design Creation & Synthesis White Paper 
 

 

www.mentor.com/precision 7     

CONCLUSION  
The need for companies to differentiate their FPGA-based products via value-added features, 
combined with the short life cycle of many products, makes FPGAs an attractive platform for 
many DSP applications. 

Dedicated DSP blocks, combined with the advanced inference and synthesis capabilities in 
Precision RTL Plus, provide the ability to seamlessly implement various high-performance DSP 
functions for any FPGA vendor. 


